Technologies

time icon Feb. 1, 2012

In vivo Assessment of Tissue Microstructure and Microdynamics: Estimation of the Average Propagator from Magnetic Resonance Data

Technology description

Summary

This invention relates to diffusion-weighted magnetic resonance imaging (DW-MRI) and describes a novel method for estimating the 3-D average propagator from DW-MRI data. The average propagator measures the probability that water molecules move from one place to another during a given diffusion time. This quantity provides local information about the tissue microstructure and the microenvironment in which water diffuses without making any a priori assumptions about the underlying diffusion process itself. Several methods, such as 3D q-space magnetic resonance imaging (MRI) and diffusion spectrum imaging have been developed to measure the average propagator, but these techniques currently require acquisition of large numbers of DW images, making them infeasible for routine animal and clinical imaging. The proposed methodology introduces a new data reconstruction concept, which involved using computer tomography (CT) algorithms to estimate the average propagator from the MR data. The proposed CT reconstruction requires many fewer DW-MRI data than conventional methods consistent with a clinically feasible period of MR image acquisition. The novel technique can be used to diagnose medical disorders that are associated with alterations in water diffusion, such as stroke and several neurodegenerative diseases and other disorders for which diffusion tensor MRI is currently used. Additional applications include drug development (screening drug candidates), material science (testing the quality of materials that have restricted and hindered compartments, e.g., porous media, gels and films) and food processing (testing structural changes in food).

Application area

  • In vivo Functional MRI of humans and animals
  • Drug development
  • Material science
  • Food processing

由于技术保密工作限制,技术信息无法完全展现,请通过邮箱或短信联系我们,获取更多技术资料。

More information

Categories
  • Information technology
  • Diagnostic radiology
Keywords:

proposed methodology introduces

clinically feasible period

underlying diffusion process

data reconstruction concept

screening drug candidates

下载 PDF 文档


感兴趣

Contact us

知繁业茂-yintrust logo知繁业茂-Branchly Innovation logo 知繁业茂-autmasia logo迈科技 logo