A stretchable electronic tactile sensor that can be stretched over 50% in at least two axial directions. Researchers at the University of California, Santa Barbara, have created a stretchable electronic tactile sensor that can be stretched over 50% in at least two axial directions. This technology can be tailored to match application-specific requirements, and to achieve sensitivity, dynamic range, and other performance measures that are not possible with alternative methods. It can be used to image mechanical properties of touched objects such as, for example, tissue palpated during medical examination, in order to aid in diagnosis. In the case of tissue palpation, the sensing method is used to detect and image subcutaneous anomalies in tissue.
Background
Tangible sensors that have been developed thus far use inflexible substrates that cannot be transformed into alternate forms. Even devices that can be modified to bend or stretch, such as those that use flexible electronic substrates, can still damage tactile sensing. Researchers from numerous fields including robotics, biomedical engineering, and materials engineering, have tried several strategies for producing flexible sensing arrays. However, current designs still lack stretchability resulting in sensors that cannot accurately transduce distributed finite-strain information, such as the information produced during palpation. Additionally, these devices cannot transmit the distributed finite-strain information to the skin of a wearer, and cannot conform to the skin of a wearer without imposing undesirable deformation.
由于技术保密工作限制,技术信息无法完全展现,请通过邮箱或短信联系我们,获取更多技术资料。
match application-specific requirements
image mechanical properties
image subcutaneous anomalies
lack stretchability resulting
imposing undesirable deformation