At present, central venous access devices have a high failure rate due to cellular obstructions or thrombus formation that can be lethal for patients. For conditions, such as hydrocephalus, a method to resolve these issues is in situ recanalization after revision surgery and in-patient neurosurgery, while for central venous access, there needs to be full replacement of these devices. Often times, patients need to be concomitantly treated with blood thinners, antibiotics, and other drugs that have other side effects. Therefore, both processes can be costly, risky, and painful for patients.
To resolve such issues, researchers at Purdue University have looked at the well-known technique of magnetic nanoparticle induced hyperthermia for treatment of cancer cells and used this method to coat or infuse magnetic nanoparticles on implantable catheters. This would induce localized heat (hyperthermia) using external magnetic fields and help to remove or prevent cellular occlusion at the site of these catheters that are used for various medical procedures. This technology would also reduce the need for revision surgery or replacement of devices and can be used in situ and activated non-invasively, making it much safer and cost-effective.
由于技术保密工作限制,技术信息无法完全展现,请通过邮箱或短信联系我们,获取更多技术资料。
central venous access
infuse magnetic nanoparticles
induce localized heat
external magnetic fields
prevent cellular occlusion