Technologies

time icon April 13, 2019

High Affinity Synbodies for Influenza

Technology description

Highly virulent strains of influenza virus are a critical public health concern with 3,000-5,000 people dying each year from influenza infection in the United States alone. Influenza is a continually evolving pathogen that develops resistance easily, including to recently approved antivirals. Rapidly diagnosing and typing influenza is essential in surveillance and deciding whether to administer therapeutics. Current ELISA kits for influenza detection are approved for the point-of-care setting, however, they suffer from variability, sensitivity, selectivity and stability.

Researchers at the Biodesign Institute of Arizona State University have developed novel synthetic antibodies (synbodies) having high affinity for influenza virus. These synbodies are specific for nucleoprotein, which is a highly conserved protein (>98%) among all the influenza strains and as such could have broad spectrum potential. Applications include diagnosing a patient with influenza virus, research reagents or alternatively, linking a therapeutic molecule to the Synbody for highly targeted treatment. Optimization strategies have been employed to create synbodies with incredibly high binding affinity (KD<200pM) as well as improved cell penetration for interfering with virus replication and a longer half-life.

These high affinity synbodies have been optimized to effectively target a highly conserved protein in most influenza strains to provide improved compositions that can not only detect but also treat influenza infections.

Application area


• Diagnostics for Influenza
• Therapeutic compositions for Influenza
• Research Reagents

Advantages


• Binds with high affinity - lead candidates have KD values greater than 200pM for Influenza Nucleoproteins
• Designed with a functional group to aid in attaching to a cell penetrating peptide
• Work with in vivo imaging to study bio-distribution
• Inhibits sufhydryl exchange to increase circulating half-life in vivo
• Does not require prior genetic information or BSL-3 conditions for discovery
• Robust scale-up process
• Thermally stable – can be used in remote areas

由于技术保密工作限制,技术信息无法完全展现,请通过邮箱或短信联系我们,获取更多技术资料。

More information

Categories
  • Infectious Department
  • Diagnosis and treatment
Keywords:

continually evolving pathogen

develops resistance easily

current elisa kits

arizona state university

highly conserved protein

下载 PDF 文档


感兴趣

Contact us

知繁业茂-yintrust logo知繁业茂-Branchly Innovation logo 知繁业茂-autmasia logo迈科技 logo