Technologies

time icon Dec. 22, 2015

GluN2C/D-selective Antagonists for Treatment of Neurological Disorders

Technology description

Market Summary

N-methyl-D-aspartate (NMDA) receptors are widely dispersed in the central nervous system (CNS) and are involved in important physiological processes such as synaptic plasticity and memory formation. NMDA receptors are also implicated in several pathophysiological conditions including Parkinson's disease, schizophrenia, depression and ischemia. Almost all drugs targeting NMDA receptors are in the discovery or preclinical phase. Additionally, most current drugs and drugs in development (dextromethorphan, esketamine) globally antagonize NMDA receptor function in the CNS, potentially resulting in adverse side-effects such as dissociative feelings and hallucinations.

Technical Summary

NMDA receptors are heterotetrameric ionic glutamate channels which comprise 2 GluN1 and 2 GluN2 subunits. While GluN2A and GluN2B subunits are broadly expressed in the CNS, the GluN2C and GluN2D subunits are more anatomically restricted, oftentimes in brain regions implicated in pathology. Therefore selective inhibition of the GluN2C/D subunits are attractive for treating certain neurological conditions. A class of GluN2C/D-specific antagonists of NMDA receptors has been discovered and characterized by the inventors. The dihydroquinolone-pyrazoline (DQP) class of NMDA receptor antagonists potently and selectively inhibit GluN2C/D-containing NMDA receptors. Moreover, some of the most potent analogs were further evaluated and possess good aqueous solubility, minimal degradation in human plasma, and potential for blood-brain barrier penetration.

Application area

A new series of compounds for selectively inhibiting N-methyl-D-aspartate (NMDA) receptor subunits for the treatment of Parkinson's disease, schizophrenia, treatment-resistant depression, and ischemia.

Advantages

  • Improved anatomical selectivity in NMDA receptor modulation may result in fewer adverse side effects.
  • Targeted antagonism of the GluN2C/D subunits of the NMDA receptor may yield better pharmacological and pharmacokinetic properties than other NMDA receptor antagonists.

由于技术保密工作限制,技术信息无法完全展现,请通过邮箱或短信联系我们,获取更多技术资料。

More information

Institution
Categories
  • Neurology
  • Diagnosis and treatment
Keywords:

market summary n-methyl-d-aspartate

central nervous system

important physiological processes

blood-brain barrier penetration

brain regions implicated

下载 PDF 文档


感兴趣

Contact us

知繁业茂-yintrust logo知繁业茂-Branchly Innovation logo 知繁业茂-autmasia logo迈科技 logo