Researchers at UC San Diego have developed a method to reversibly tag a protein essential for the assembly of complex molecules in biological cells. Specifically, the inventors have invented new methods and compositions for removing a phosphopantethiene analogue moiety from an ACP-phosphopantetheine conjugate thereby providing Apo-ACP proteins. This reversible process can be repeated multiple times without degradation in protein identity, making it a major addition to an already popular and useful labeling method.
The technique could help researchers to rewire cellular factories, such as those involved in nonribosomal protein, and fatty acid syntheses, to allow construction of new products, such as biofuels or drugs. Given the multitude of existing opportunities for ACP labeling, particularly in work involving fusion-protein applications and natural-product biosynthetic studies, this reversible methodology will provide markedly improved flexibility for rapid modification of protein species. Additionally, the cost-saving measure of recovering valuable apo-ACP substrates cannot be overlooked.Related Materials
Nicolas M Kosa, Robert W Haushalter, Andrew R Smith & Michael D Burkart “Reversible labeling of native and fusion-protein motifs” Nature Methods 9, 2012, pp 981-984.
Coverage in Sept 19, 2012 issue of Chemical & Engineering News “Tool May Aid Biosynthetic Reverse Engineering”
Additional Technologies by these Inventors
由于技术保密工作限制,技术信息无法完全展现,请通过邮箱或短信联系我们,获取更多技术资料。
uc san diego
phosphopantethiene analogue moiety
repeated multiple times
fatty acid syntheses
natural-product biosynthetic studies