Nanovehicles Published date: Oct. 26, 2017 Technology description ### Removing Beta Amyloid Plaques Using Nanovehicles Disc-shaped nanovehicles have been developed to diagnose and treat cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD). The nanovehicles may be able to act as a diagnostic probe, to help relieve symptoms caused by cerebrovascular inflammation, and to promote $A\beta$ plaque removal in the brain. The 200nm, disc-shaped nanovehicles consist of a polymeric core that contains polycarbophil, Technetium-99m (Tc99m) chitosan, and cyclophosphamide. The nanovehicles diagnostic potential is due to Tc99m, which is attached to chitosan, and serves as a radioactive tracer for single photo emission computer tomography (SPECT). This aspect could be a highly sensitive and specific diagnostic method to detect $A\beta$ deposits. The chitosan coating increases cellular uptake and the nanovehicles design allows them to escape phagocytic destruction. The nanovehicles are assembled through a "single pot" three-step process with high conjugation efficiency. # Cerebral Amyloid Angiopathy and Alzheimer's Disease Lack Effective Treatments Cerebral amyloid angiopathy and Alzheimer's disease affect millions of people worldwide. CAA is characterized by amyloid beta (A β) deposits in the brain, which increases the patient's risk of stroke and dementia. A β plaques are also present in all AD patients. Effective treatments for either disease continue to evade researchers. Although the initial cause of A β buildup is unknown, targeting A β plaques is a promising treatment strategy. #### Advantages Tc99m acts as a radioactive tracer for SPECT imaging Nanovehicles may act as a diagnostic probe Chitosan coating increases cellular uptake and helps prevent phagocytic destruction Promote A β plaque removal to reduce inflammation and improve symptoms #### Institution #### **University of Minnesota** ## 联系我们 #### 叶先生 电话: 021-65679356 手机: 13414935137 邮箱: yeyingsheng@zf-ym.com