

# Nurr1 as a Genetic Target for Treating Levodopainduced Dyskinesias (LIDs) in Parkinson's Disease

Published date: June 23, 2016

## Technology description

**Executive Summary** 

Patients afflicted with Parkinson' s disease often develop severely debilitating movement disorders as side effects from currently available treatment options. Researchers at MSU propose to use a new gene therapy approach that will both reduce these side effects and prolong the effectiveness of treatment by targeted gene silencing.

**Description of Technology** 

L-Dopa induced dyskinesia (LID) is a side effect of prolonged chronic use of L-Dopa medication. A hyper-expression of Nurr1 protein in affected brain areas might underlie these side effects. Local injection of vectors encoding target genes in affected striatum can directly prevent the hyper-expression allowing for potentially improved fine-tuned response for motor control.

### Application area

Treatment of LID in patients with Parkinson's disease

Potentially useful in the treatment of other movement disorders

#### Advantages

Improved quality of life for Parkinson's patients
Improved and prolonged benefit for movement disorders

#### Institution

Michigan State University

#### Inventors

Nicholas Kanaan

Associate Professor

Translational Neuroscience

Jack Lipton

Chairperson

Translation Science & Molecular Medicine

**Caryl Sortwell** 

Professor

Translation Science & Molecular Med

**Kathy Steece-Collier** 

Professor

Translational Science and Molecular Medicine

**Timothy Collier** 

**EA Brophy Chair** 

Translational Science and Molecular Medicine

Fredric Manfredsson

Associate Professor

Department of Neurobiology

## 联系我们



### 叶先生

电话: 021-65679356 手机: 13414935137

邮箱: yeyingsheng@zf-ym.com