

Efficacy in Treating Bacterial Infection

Published date: June 24, 2014

Technology description

A compound that inhibits the invasion of host cells and decreases intracellular persistence of *Staphylococcus aureus*

The goal is to develop host-directed therapies that limit host cell invasion to break the cycle of recurrent infection. Researchers identified ML141 as a small molecule inhibitor that decreases host cell invasion in a dose-dependent, reversible manner [2]. Host cell viability and bactericidal assays indicated no detectable decrease in host or bacterial viability, indicating an underlying mechanism of inhibition through non-cytotoxic and non-bactericidal activities. Structural analogs were synthesized to improve bioavailability and are well positioned for examining efficacy in recurrent infection.

Background

Staphylococcus aureus is the most common agent in systemic infection and in the biofilm-mediated infection of implanted medical devices in the United States. Infections by *Staphylococcus aureus* develop repeatedly in individuals with chronic lung disease, including chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) [1]. Recently, treatment of *S. aureus* has been complicated by the emergence of antibiotic resistance, an increase in elderly, immunocompromised populations of people, and prevalence in the use of surgically-implanted devices. Additionally, both resistant and susceptible strains of *S. aureus* are capable of persisting asymptotically for months to years after antimicrobial therapy is discontinued. Severe infection from *S. aureus* causes a number of chronic health problems including endocarditis, osteomyelitis, and recurrent lung infection. Severe infection also results in high mortality rates of 11-43%. The current cost-of-care of infection by methicillin resistant *S. aureus*, or MRSA, alone is estimated at \$10 billion annually, a staggeringly high cost. Currently, options for improving treatment of *S. aureus* infections include the creation of new antibiotics and the development of adjunctive therapeutics.

Technology Description

A collaboration of researchers at the University of New Mexico and Ball State University have discovered a compound that inhibits the invasion of host cells and decreases intracellular persistence of *Staphylococcus aureus*. It has also been discovered that using this particular compound at a certain host cell activation site decreases not only the chance of invasion by bacterial pathogens, but by viral

pathogens as well by inhibiting both uptake and replication. Such a discovery may prove to be a central target in developing aggressive new treatment strategies for invasive infection of *S. aureus* and other pathogens.

The goal is to develop host-directed therapies that limit host cell invasion to break the cycle of recurrent infection. Researchers identified ML141 as a small molecule inhibitor that decreases host cell invasion in a dose-dependent, reversible manner [2]. Host cell viability and bactericidal assays indicated no detectable decrease in host or bacterial viability, indicating an underlying mechanism of inhibition through non-cytotoxic and non-bactericidal activities. Structural analogs were synthesized to improve bioavailability and are well positioned for examining efficacy in recurrent infection.

Underlying Pharmacology

ML141 is an allosteric inhibitor that dissociates GTP and GDP with specificity within the activation site of human CDC42 [3]. Our previous work had suggested a central regulatory role for hCDC42 in the endocytic pathway that is exploited by *S. aureus* to invade host cells [4]. We found ML141 decreases formation of the a5b1 integrin receptor complexes used by *S. aureus* to invade [2]. We also found that ML141 decreases host cell binding to fibronectin, the host ligand used by *S. aureus* to engage the integrin receptor. Thus, ML141 decreases invasion by *S. aureus* in part by impeding appropriate formation and function of the integrin complex needed by *S. aureus* to invade.

References

- [L. Cullen, S. McClean, Bacterial adaptation during chronic respiratory infections, pathogens. 4 \(2015\) 66-89.](#)
- [D. Cordero, C.R. Fullenkamp, R.R. Pelly, K.M. Reed, L.M. Caffo, A.N. Zahrt, M. Newman, S. Komanapalli, E.M. Niemeier, D.L. Bishop, H.A. Bruns, M.K. Haynes, L.A. Sklar, R.E. Sammelson, S.A. McDowell, Small molecule inhibitors limit endothelial cell Invasion by *Staphylococcus aureus*, Curr Pharm Biotechnol. 15 \(2014\) 727-737.](#)
- [L. Hong, S.R. Kenney, G.K. Phillips, D. Simpson, C.E. Schroeder, J. Noth, E. Romero, S. Swanson, A. Waller, J.J. Strouse, M. Carter, A. Chigaev, O. Ursu, T. Oprea, B. Hjelle, J.E. Golden, J. Aube, L.G. Hudson, T. Buranda, L.A. Sklar, A. Wandinger-Ness, Characterization of a Cdc42 protein inhibitor and its use as a molecular probe, J Biol Chem. 288 \(2013\) 8531-8543.](#)
- [M.P. Horn, S.M. Knecht, F.L. Rushing, J. Birdsong, C.P. Siddall, C.M. Johnson, T.N. Abraham, A. Brown, C.B. Volk, K. Gammon, D.L. Bishop, J.L. McKillip, S.A. McDowell, Simvastatin inhibits *Staphylococcus aureus* host cell invasion through modulation of isoprenoid intermediates, J Pharmacol Exp Ther. 326 \(2008\) 135-143.](#)

Application area

May be used in the pharmaceutical industry to develop new, more effective antibiotics
Provides a novel strategy in the treatment of invasive infection of *S. aureus* and other pathogens
Suggests new avenues for research regarding host immune responses and compound development for treatment of infection

Helps to limit populations of persisting bacteria, suggesting a new therapeutic approach for chronic, recurrent infections in: chronic obstructive pulmonary disease (COPD) and cystic fibrosis, prosthetic device implants, osteomyelitis, tonsillitis, infective endocarditis, rhinosinusitis

Institution

[The University of New Mexico](#)

Inventors

[Mark Haynes](#)

[Larry Sklar](#)

[Susan McDowell](#)

[Robert Sammelson](#)

联系我们

叶先生

电 话 : 021-65679356

手 机 : 13414935137

邮 箱 : yeningsheng@zf-ym.com