

X-Ray-Triggered Release of Drugs from Nanoscale Drug Carriers

Published date: March 14, 2017

Technology description

Small molecule chemotherapeutics have been employed in cancer therapy. However, their effectiveness is often hampered by systemic toxicity. Although prodrugs have decreased systemic toxicity, they have met with limited success. External triggering by microwaves, ultrasound, light, and magnetic fields, as well as natural triggering have been explored as a mechanism of drug molecule release, but all fall short due to lack of targeting precision or shallow penetration depths. Thus, there exists a need for a drug delivery approach that can deliver a prodrug to a target cellular location and controllably release the drug at that target cellular location.

Researchers at the University of California, Davis have identified a means by which large quantities of inactive drugs (particularly chemotherapeutics) can be delivered by nanoscale drug carriers to a target location where they can be rendered active by X-rays. Because X-rays are highly penetrating and have been used clinically in diagnosis and treatment of tumors, x-rays can potentially become a successful external triggering tool by cleaving the chemical bonds of the molecules linking the drug molecules to the nanoscale drug carriers for cell-specific delivery. The technology also allows for several variations of the nanosystem that make it amenable to a wide array of delivery targets and drugs.

Researchers at the University of California, Davis have identified a means by which large quantities of inactive drugs (particularly chemotherapeutics) can be delivered by nanoscale drug carriers to a target location where they can be rendered active by X-rays.

Additional Technologies by these Inventors

Enhancement Of X-Ray Radiation Using Nanomaterials

Formation of Polymers on Nanostructures Under X-ray Irradiation

Measurement of Nanoscale Physical Enhancement by Materials under X-ray Irradiation

Combined Individual Nanomaterial Enhancements for Total X-Ray Enhancement

Application area

Targeted delivery of small molecule therapeutics

Advantages

Nanoparticles can be modified to suit drug

Drug delivery can target specific cellular locations

Ability to activate release of drug in target cell

X-ray triggering method is already common component of clinical procedures

Lower systemic toxicity

Applicable to wide variety of drugs

Institution

University of California, Davis

Inventors

Ting Guo

Zane Starkewolfe

联系我们

叶先生

电话: 021-65679356 手机: 13414935137

邮箱: yeyingsheng@zf-ym.com