

Novel Tautomycetin Analogs Specifically Inhibit SHP-2, May Provide New Cancer Treatment

Published date: March 14, 2017

Technology description

SHP-2 is an oncogene from the protein tyrosine phosphatase (PTP) superfamily. Mutations in SHP-2 can cause multiple forms of leukemia and solid tumors, as well as the autosomal dominant disorders Noonan syndrome and Leopard syndrome, making SHP-2 an attractive drug target. However, it has proven difficult to develop SHP-2 inhibitors with optimal potency and pharmacological properties.

Tautomycetin (TTN) may provide a promising lead for the development of new immunosuppressive and anti-tumor agents. TTN is a complex polyketide natural product produced by *Streptomyces griseochromogens*. It has been identified as a potent immunosuppressor of activated T cells in organ transplantation and also has been shown to inhibit growth of colorectal cancer cells. Researchers at UW–Madison and Indiana University have developed novel TTN analogs that inhibit SHP-2. These analogs can be used to treat diseases related to SHP-2, including Noonan syndrome, Leopard syndrome, leukemia and solid tumors.

The researchers showed that TTN and one of its engineered analogs, TTN D-1, specifically inhibit the activity of SHP-2. They also determined the X-ray crystal structure of SHP-2 with TTN D-1 bound to its active site. Together with the biochemical and cellular data, this structure supports the idea that SHP-2 is a cellular target for TTN and provides new insights for developing novel therapeutics that target SHP-2.

The Wisconsin Alumni Research Foundation (WARF) is seeking commercial partners interested in developing novel tautomycetin analogs that inhibit SHP-2 and therefore may be useful in the treatment of several types of cancer and other disorders.

Application area

Treating SHP-2-related cancers, including leukemia and solid tumors

Treating Noonan syndrome

Treating Leopard syndrome

Advantages

TTN and TTN D-1 are the most potent and specific SHP-2 inhibitors currently known.
Reduced SHP-2 activity by 80 to 90 percent at 10 μ M concentration
Highly specific for SHP-2, showing no significant inhibition of other PTP family members
TTN is a natural product of microbial origin and can be produced by large-scale fermentation.
Provides an inhibitor for a previously “undruggable” target
May be administered in combination with other anticancer therapeutics or immunotherapeutic agents

Institution

[Wisconsin Alumni Research Foundation](#)

Inventors

[Ben Shen](#)

联系我们

叶先生

电话 : 021-65679356

手机 : 13414935137

邮箱 : yeyingsheng@zf-ym.com