

Biohybrid elastomeric scaffolds

Published date: Aug. 28, 2016

Technology description

Background

There is a need for biodegradable materials that combine the favorable bioreactive and biocompatible properties of naturally-occurring scaffold materials with the reproducible and predictable properties of synthetic scaffold materials. There is also a need for biocompatible and biodegradable materials that are useful for promoting wound and tissue healing that, that possess bioactive components, and that exhibit elastomeric mechanical properties similar to native tissue.

Technology

Provided are compositions and medical devices, and in particular, biodegradable elastomeric scaffolds comprising both a synthetic component and a biological component. Also provided are methods of using the hybrid elastomeric scaffolds for treating wounds and/or promoting tissue regeneration. In one non-limiting use, these biodegradable elastomeric scaffolds can promote tissue regeneration and/or wound healing when applied to open wounds that result from surgery or trauma.

Application area

- 1. Scaffold for tissue engineering applications especially involving soft tissue
- 2. Material to protect a wound site and encourage a healing response for military applications

Advantages

1. Biodegradable elastomeric scaffold with both biological and mechanical properties appropriate for many load bearing sites of tissue regeneration

Institution

University of Pittsburgh

Inventors

Stephen Badylak

William Wagner
John Stankus
Jianjun Guan
Thomas Gilbert
Donald Freytes

联系我们

叶先生

电话: 021-65679356 手机: 13414935137

邮箱: yeyingsheng@zf-ym.com