

Carbohydrate digestive enzyme inhibit composition

Published date: June 1, 2017

Technology description

The invention relates to a composition used for inhibiting carbonic acid digestive enzyme, which is separated from the cavity Kun cloth (Ecklonia cava) and used as the effective component. In particular, the, (a) for the cavity Kun cloth is extracted with 70% 100% ethanol and concentrated; (b) to dissolve the concentrated liquid obtained in the above steps in water, adding water and ethyl acetate, and obtaining ethyl acetate fractionation. After the ethyl acetate is loaded into the cylinder filled with Yin salt and the diethyl ether is dissolved, the first active component; (d) is loaded into the cylinder filled with glucan LH-20, and the ratio of trichloromethane to methanol is 2:1 to 0:1 to obtain the second active component. (e) installed the second active component on 10 × 250 mm C 18 cylinder, using high speed liquid chromatography, the ratio of methanol to water was 35 to 65, the flow rate of solution 1.0ml/min was maintained, and the holding time was 23.5min. The invention relates to all the above steps relating to the preparation of a composition for the effective treatment of diabetes by carbonic acid digestive enzymes.

More specifically, the first active component and the second active component (a) increased the cell survival rate under the condition of oxidation pressure caused by high concentration of glucose. The activity of intracellular lipid peroxide produced by; (b) high concentration glucose inhibited; (c) to eliminate intracellular active oxidation species produced by high concentration glucose treatment. (d) eliminates the intracellular nitric oxide (nitric oxide) produced by high concentration of glucose.

Application area

Prevention and treatment of diabetes mellitus and diabetic complications

Institution

[Pukyong National University](#)

联系我们

叶先生

电 话 : 021-65679356

手 机 : 13414935137

邮 箱 : yeingsheng@zf-ym.com